Different methods to convert column to float in pandas DataFrame
In this tutorial we will discuss how to convert DataFrame columns into float using the following methods:
Convert integer type column to float:
- Using
astype()
method - Using
astype()
method with dictionary - Using
astype()
method by specifying data types
Convert string/object type column to float:
- Using
astype()
method - Using
astype()
method with dictionary - Using
astype()
method by specifying data types
Convert to float using convert_dtypes()
Create pandas DataFrame with example data
DataFrame is a data structure used to store the data in two dimensional format. It is similar to table that stores the data in rows and columns. Rows represents the records/ tuples and columns refers to the attributes.
We can create the DataFrame by using pandas.DataFrame() method.
Syntax:
pandas.DataFrame(input_data,columns,index)
Parameters:
It will take mainly three parameters
input_data
is represents a list of datacolumns
represent the columns names for the dataindex
represent the row numbers/values
We can also create a DataFrame using dictionary by skipping columns and indices.
Example: Python Program to create a dataframe for market data from a dictionary of food items by specifying the column names.
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#display the dataframe data types
print(dataframe.dtypes)
Output:
id object
name object
cost int64
quantity object
dtype: object
Method 1 : Convert integer type column to float using astype() method
Here we are going to convert the integer type column in DataFrame to integer type using astype()
method. we just need to pass float
keyword inside this method.
Syntax:
dataframe['column'].astype(float)
where,
- dataframe is the input dataframe
- column is the integer type column to be converted to float
Example:
Python program to convert cost column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the cost column data type (integer) into float
dataframe['cost'] = dataframe['cost'].astype(float)
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost float64
quantity object
dtype: object
Method 2 : Convert integer type column to float using astype() method with dictionary
Here we are going to convert the integer type column in DataFrame to float type using astype()
method. we just need to pass float keyword inside this method through dictionary
.
Syntax:
dataframe['column'].astype({"column":float})
where,
- dataframe is the input dataframe
- column is the integer type column to be converted to float
Example: Python program to convert cost column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567.00,562.56,67.00,76.09],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the cost column data type (integer) into float
dataframe = dataframe.astype({"cost": float})
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost float64
quantity object
dtype: object
Method 3 : Convert integer type column to float using astype() method by specifying data types
Here we are going to use astype()
method twice by specifying types. first method takes the old data type i.e int and second method take new data type i.e float type
Syntax:
dataframe['column'].astype(int).astype(float)
Example: Python program to convert cost column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the cost column data type (integer) into float
dataframe['cost'] = dataframe['cost'].astype(int).astype(float)
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost float64
quantity object
dtype: object
Method 4 : Convert string/object type column to float using astype() method
Here we are going to convert the string type column in DataFrame to float type using astype()
method. we just need to pass float keyword inside this method.
Syntax:
dataframe['column'].astype(float)
where,
- dataframe is the input dataframe
- column is the string type column to be converted to float
Example: Python program to convert quantity column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the quantity column data type (string) into float
dataframe['quantity'] = dataframe['quantity'].astype(float)
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost int64
quantity float64
dtype: object
Method 5 : Convert string/object type column to float using astype() method with dictionary
Here we are going to convert the string type column in DataFrame to float type using astype()
method. we just need to pass float keyword inside this method through dictionary.
Syntax:
dataframe['column'].astype({"column":float})
where,
- dataframe is the input dataframe
- column is the string type column to be converted to float
Example: Python program to convert quantity column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the quantity column data type (string) into integer
dataframe = dataframe.astype({"quantity": float})
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost int64
quantity float64
dtype: object
Method 6 : Convert string/object type column to float using astype() method by specifying data types
Here we are going to use astype()
method twice by specifying types. first method takes the old data type i.e string and second method take new data type i.e float type
Syntax:
dataframe['column'].astype(str).astype(float)
Example: Python program to convert quantity column to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567,562,67,76],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert the quantity column data type (string) into float
dataframe['quantity'] = dataframe['quantity'].astype(str).astype(float)
#display data types
print(dataframe.dtypes)
Output:
id object
name object
cost int64
quantity float64
dtype: object
Method 7 : Convert to float using convert_dtypes()
Here we are going to use convert_dtypes()
method. It will automatically convert into float type.
Syntax:
dataframe.convert_dtypes()
Example: Python program to convert dataframe columns to float
#import the module
import pandas
#consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
'name':['ground-nut oil','almonds','flour','cereals'],
'cost':[567.00,562.56,67.00,76.09],
'quantity':['1','2','3','2']}
#pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])
#convert into int type
dataframe = dataframe.convert_dtypes()
print(dataframe.dtypes)
Output:
id string
name string
cost int64
quantity string
dtype: object
dtype: object
Summary
In this tutorial we discussed how to convert dataframe column to float type using astype()
method through 7 scenarios by considering integer and string/object (str) types. Here Dictionary is involved in two methods to convert the data type.
Reference