How to print entire DataFrame in 10 different formats [Practical Examples]

Different methods to display entire DataFrame in pandas

In this tutorial we will discuss how to display the entire DataFrame in Pandas using the following methods:

  • Using set_option() method
  • Display with or without index
  • Display in Markdown format
  • Display in psql format
  • Display in plain-text format
  • Display in RST format
  • Display in github format
  • Display in pretty format
  • Display in tsv format
  • Display in HTML format

 

Create pandas DataFrame with example data

DataFrame is a data structure used to store the data in two dimensional format. It is similar to table that stores the data in rows and columns. Rows represents the records/ tuples and columns refers to the attributes.

Advertisement

We can create the DataFrame by using pandas.DataFrame() method.

Syntax:

pandas.DataFrame(input_data,columns,index)

Parameters:

It will take mainly three parameters

  1. input_data is represents a list of data
  2. columns represent the columns names for the data
  3. index represent the row numbers/values

We can also create a DataFrame using dictionary by skipping columns and indices.

 

Example: Python Program to create a dataframe for market data from a dictionary of food items by specifying the column names.

Advertisement
# import the module
import pandas

# consider the food data
food_input={'id':['foo-23','foo-13','foo-02','foo-31'],
                  'name':['ground-nut oil','almonds','flour','cereals'],
                  'cost':[567.00,562.56,67.00,76.09],
                  'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows 
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4'])

# display the dataframe
print(dataframe)

Output:

            id            name    cost  quantity
item-1  foo-23  ground-nut oil  567.00         1
item-2  foo-13         almonds  562.56         2
item-3  foo-02           flour   67.00         3
item-4  foo-31         cereals   76.09         2

You can learn more at Pandas dataframe explained with simple examples

 

1. Print entire DataFrame using set_option() method

Here we are going to display the entire dataframe

with this method, we can display n number of rows and columns.

Syntax:

# display all the  rows
pandas.set_option('display.max_rows', None)

# display all the  columns
pandas.set_option('display.max_columns', None)

# set width  - 100
pandas.set_option('display.width', 100)

# set column header -  left
pandas.set_option('display.colheader_justify', 'left')

# set precision - 5
pandas.set_option('display.precision', 5)

Example:

Advertisement
# import the module 
import pandas 

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# display all the  rows
pandas.set_option('display.max_rows', None)

# display all the  columns
pandas.set_option('display.max_columns', None)

# set width  - 100
pandas.set_option('display.width', 100)

# set column header -  left
pandas.set_option('display.colheader_justify', 'left')

# set precision - 5
pandas.set_option('display.precision', 5)

# display the dataframe
print(dataframe)

Output:

       id      name             cost    quantity
item-1  foo-23  ground-nut oil  567.00  1       
item-2  foo-13         almonds  562.56  2       
item-3  foo-02           flour   67.00  3       
item-4  foo-31         cereals   76.09  2

 

2. Print entire DataFrame with or without index

Here we are going to display the entire dataframe.

With this method, we can display n number of rows and columns with and with out index.

Syntax:

dataframe.to_string(index=False)
dataframe.to_string(index=True)

Example:

# import the module 
import pandas 

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 


# display the dataframe with out index
print("Pandas DataFrame without index:\n", dataframe.to_string(index=False))

# display the dataframe with index
print("Pandas DataFrame with index:\n", dataframe.to_string(index=True))

Output:

Advertisement
Pandas DataFrame without index:
     id           name   cost  quantity
foo-23 ground-nut oil 567.00         1
foo-13        almonds 562.56         2
foo-02          flour  67.00         3
foo-31        cereals  76.09         2


Pandas DataFrame with index:
             id            name    cost  quantity
item-1  foo-23  ground-nut oil  567.00         1
item-2  foo-13         almonds  562.56         2
item-3  foo-02           flour   67.00         3
item-4  foo-31         cereals   76.09         2

 

3. Print entire DataFrame in Markdown format

Here we are going to display in markdown format

Syntax:

dataframe.to_markdown()

Example:

# import the module 
import pandas 

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay in mark down
print(dataframe.to_markdown())

Output:

|        | id     | name           |   cost |   quantity |
|:-------|:-------|:---------------|-------:|-----------:|
| item-1 | foo-23 | ground-nut oil | 567    |          1 |
| item-2 | foo-13 | almonds        | 562.56 |          2 |
| item-3 | foo-02 | flour          |  67    |          3 |
| item-4 | foo-31 | cereals        |  76.09 |          2 |

 

4. Print entire DataFrame in psql format

Here we are going to display the entire dataframe in psql format.

This is a format available in tabulate package. so we need to install this package.

Advertisement

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='psql')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in psql format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in psql format
print(tabulate(dataframe, headers='keys', tablefmt='psql'))

Output:

+--------+--------+----------------+--------+------------+
|        | id     | name           |   cost |   quantity |
|--------+--------+----------------+--------+------------|
| item-1 | foo-23 | ground-nut oil | 567    |          1 |
| item-2 | foo-13 | almonds        | 562.56 |          2 |
| item-3 | foo-02 | flour          |  67    |          3 |
| item-4 | foo-31 | cereals        |  76.09 |          2 |
+--------+--------+----------------+--------+------------+

 

5. Print entire DataFrame in plain-text format

Here we are going to display the entire dataframe in plain-text format.

Advertisement

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='plain-text')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in plain-text format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in plain-text format
print(tabulate(dataframe, headers='keys', tablefmt='plain-text'))

Output:

Advertisement
        id      name              cost    quantity
------  ------  --------------  ------  ----------
item-1  foo-23  ground-nut oil  567              1
item-2  foo-13  almonds         562.56           2
item-3  foo-02  flour            67              3
item-4  foo-31  cereals          76.09           2

 

6. Print entire DataFrame in RST format

Here we are going to display the entire dataframe in RST  format. RST stands for restructured text .

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='RST')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in RST format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in RST format
print(tabulate(dataframe, headers='keys', tablefmt='RST'))

Output:

        id      name              cost    quantity
------  ------  --------------  ------  ----------
item-1  foo-23  ground-nut oil  567              1
item-2  foo-13  almonds         562.56           2
item-3  foo-02  flour            67              3
item-4  foo-31  cereals          76.09           2

 

7. Print entire DataFrame in github format

Here we are going to display the entire dataframe in github format.

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='github ')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in github format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in github format
print(tabulate(dataframe, headers='keys', tablefmt='github'))

Output:

|        | id     | name           |   cost |   quantity |
|--------|--------|----------------|--------|------------|
| item-1 | foo-23 | ground-nut oil | 567    |          1 |
| item-2 | foo-13 | almonds        | 562.56 |          2 |
| item-3 | foo-02 | flour          |  67    |          3 |
| item-4 | foo-31 | cereals        |  76.09 |          2 |

 

8. Print entire DataFrame in pretty format

Here we are going to display the entire dataframe in pretty format.

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='pretty')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in pretty format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in pretty format
print(tabulate(dataframe, headers='keys', tablefmt='pretty'))

Output:

+--------+--------+----------------+--------+----------+
|        |   id   |      name      |  cost  | quantity |
+--------+--------+----------------+--------+----------+
| item-1 | foo-23 | ground-nut oil | 567.0  |    1     |
| item-2 | foo-13 |    almonds     | 562.56 |    2     |
| item-3 | foo-02 |     flour      |  67.0  |    3     |
| item-4 | foo-31 |    cereals     | 76.09  |    2     |
+--------+--------+----------------+--------+----------+

 

9. Print entire DataFrame in tsv format

Here we are going to display the entire dataframe in tab separated value format.

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='tab')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in tab format

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in tab format
print(tabulate(dataframe, headers='keys', tablefmt='tab'))

Output:

        id      name              cost    quantity
------  ------  --------------  ------  ----------
item-1  foo-23  ground-nut oil  567              1
item-2  foo-13  almonds         562.56           2
item-3  foo-02  flour            67              3
item-4  foo-31  cereals          76.09           2

 

10. Print entire DataFrame in HTML format

Here we are going to display the entire dataframe in HTML (Hyper text markup language) format.

This is a format available in tabulate package. so we need to install this package.

Install tabulate using pip:

pip install tabulate

Syntax for this format:

tabulate(dataframe, headers='keys', tablefmt='HTML')

where, dataframe is the input dataframe

 

Example: Python program to display the entire dataframe in HTMLformat

# import the module 
import pandas 
from tabulate import tabulate

# consider the food data 
food_input={'id':['foo-23','foo-13','foo-02','foo-31'], 
            'name':['ground-nut oil','almonds','flour','cereals'], 
            'cost':[567.00,562.56,67.00,76.09], 
            'quantity':[1,2,3,2]}

# pass this food to the dataframe by specifying rows
dataframe=pandas.DataFrame(food_input,index = ['item-1', 'item-2', 'item-3', 'item-4']) 

# dispay the entire dataframe in HTML format
print(tabulate(dataframe, headers='keys', tablefmt='HTML'))

Output:

        id      name              cost    quantity
------  ------  --------------  ------  ----------
item-1  foo-23  ground-nut oil  567              1
item-2  foo-13  almonds         562.56           2
item-3  foo-02  flour            67              3
item-4  foo-31  cereals          76.09           2

 

Summary

In this article we discussed how to print entire dataframe in following formats:

  • Markdown format
  • psql format
  • plain-text format
  • RST format
  • github format
  • pretty format
  • tsv format
  • HTML format

 

References

Display entire dataframe

 

Didn't find what you were looking for? Perform a quick search across GoLinuxCloud

If my articles on GoLinuxCloud has helped you, kindly consider buying me a coffee as a token of appreciation.

Buy GoLinuxCloud a Coffee

For any other feedbacks or questions you can either use the comments section or contact me form.

Thank You for your support!!

Leave a Comment

X